Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 8 - Integration Techniques, L'Hopital's Rule, and Improper Integrals - 8.2 Exercises - Page 521: 28

Answer

$$\int 4 \arccos x d x =4x\arccos x -4\sqrt{1-x^{2}}+c$$

Work Step by Step

Since $$ \int 4 \arccos x d x $$ integrate by parts , let \begin{align*} u&=\arccos (x) \ \ \ \ dv=4 d x \\ du&=-\frac{1}{\sqrt{1-x^{2}}} \ \ \ \ \ v=4 x\end{align*} Then \begin{align*} \int 4 \arccos x d x&=uv-\int vdu \\ &=4x\arccos x +\int \frac{4xdx}{\sqrt{1-x^{2}}}\\ &=4x\arccos x -4\sqrt{1-x^{2}}+c \end{align*}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.