Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 8 - Integration Techniques, L'Hopital's Rule, and Improper Integrals - 8.2 Exercises - Page 521: 35

Answer

$$2\sqrt y = x\sin x + \cos x + 3$$

Work Step by Step

$$\eqalign{ & \frac{{dy}}{{dx}} = x\sqrt y \cos x,{\text{ }}\left( {0,4} \right) \cr & {\text{Separate the variables}} \cr & \frac{1}{{\sqrt y }}dy = x\cos xdx \cr & {y^{ - 1/2}}dy = x\cos xdx \cr & {\text{Integrate both sides}} \cr & \int {{y^{ - 1/2}}} dy = \int {x\cos x} dx \cr & \frac{{{y^{1/2}}}}{{1/2}} = \int {x\cos x} dx{\text{ }}\left( {\bf{1}} \right) \cr & {\text{*Integrate }}\int {x\cos x} dx{\text{ by parts}} \cr & {\text{Integrate by parts}} \cr & {\text{Let }}u = x \Rightarrow du = dx \cr & dv = \cos xdx \Rightarrow v = \sin x \cr & {\text{Integration by parts formula }} \cr & \int {x\cos x} dx = x\sin x - \int {\sin x} dx \cr & \int {x\cos x} dx = x\sin x + \cos x + C \cr & {\text{Substitute the previous result into }}\left( {\bf{1}} \right) \cr & \frac{{{y^{1/2}}}}{{1/2}} = x\sin x + \cos x + C{\text{ }} \cr & 2\sqrt y = x\sin x + \cos x + C,{\text{ }}\left( {\bf{2}} \right) \cr & {\text{Use the initial condition }}\left( {0,4} \right) \cr & 2\sqrt 4 = \left( 0 \right)\sin \left( 0 \right) + \cos \left( 0 \right) + C \cr & 4 = 1 + C \cr & C = 3 \cr & {\text{Substitute }}C{\text{ into }}\left( {\bf{2}} \right) \cr & 2\sqrt y = x\sin x + \cos x + 3 \cr & \cr & {\text{Graph}} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.