Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 8 - Integration Techniques, L'Hopital's Rule, and Improper Integrals - 8.2 Exercises - Page 521: 27

Answer

$xarctanx-\frac{1}{2}\ln ({x^{2}+1})+C$

Work Step by Step

Given $\int arctanxdx$ Use intergration by parts. $u=arctanx,dv=\int dx$ $u=\frac{1}{x^{2}+1}dx,v=x$ $=xarctanx-\int \frac{x}{x^{2}+1}dx$ Let $u=x^{2}+1$ $\frac{du}{dx}=2x$ $dx=\frac{1}{2x}du$ $=xarctanx-\frac{1}{2}\int \frac{du}{u}$ $=xarctanx-\frac{1}{2}\ln u+C$ $=xarctanx-\frac{1}{2}\ln ({x^{2}+1})+C$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.