Answer
$xarctanx-\frac{1}{2}\ln ({x^{2}+1})+C$
Work Step by Step
Given $\int arctanxdx$
Use intergration by parts.
$u=arctanx,dv=\int dx$
$u=\frac{1}{x^{2}+1}dx,v=x$
$=xarctanx-\int \frac{x}{x^{2}+1}dx$
Let $u=x^{2}+1$
$\frac{du}{dx}=2x$
$dx=\frac{1}{2x}du$
$=xarctanx-\frac{1}{2}\int \frac{du}{u}$
$=xarctanx-\frac{1}{2}\ln u+C$
$=xarctanx-\frac{1}{2}\ln ({x^{2}+1})+C$