Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 8 - Integration Techniques, L'Hopital's Rule, and Improper Integrals - 8.2 Exercises - Page 521: 31

Answer

$$y=x\ln x-x+c$$

Work Step by Step

Since $$ y^{\prime}=\ln x $$ Then \begin{align*} \frac{dy}{dx}&=\ln x\\ y&=\int\ln x dx \end{align*} Integrate by parts, let \begin{align*} u&=\ln x\ \ \ \ \ \ \ dv=dx\\ u&=\frac{dx}{ x}\ \ \ \ \ \ \ \ \ \ v=x \end{align*} Then \begin{align*} \int\ln x dx&=uv-\int vdu\\ &=x\ln x-\int dx\\ &=x\ln x-x+c \end{align*} Hence $$y=x\ln x-x+c$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.