Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 8 - Integration Techniques, L'Hopital's Rule, and Improper Integrals - 8.2 Exercises - Page 521: 19

Answer

$$\int \frac{x e^{2 x}}{(2 x+1)^{2}} d x =\frac{-xe^{2 x}}{2\left(2x+1\right)}+\frac{1}{4} e^{2 x}+c$$

Work Step by Step

Since $$ \int \frac{x e^{2 x}}{(2 x+1)^{2}} d x $$ integrate by parts, let \begin{align*} u&= xe^{2 x}\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ dv=\frac{ dx }{(2 x+1)^{2}} \\ u&= (2x+1)e^{2 x}dx\ \ \ \ \ \ v=\frac{-1}{2\left(2x+1\right)} \end{align*} Then \begin{align*} \int \frac{x e^{2 x}}{(2 x+1)^{2}} d x&=uv-\int vdu\\ &=\frac{-xe^{2 x}}{2\left(2x+1\right)}+\int \frac{(2x+1)e^{2 x}}{2\left(2x+1\right)}dx\\ &=\frac{-xe^{2 x}}{2\left(2x+1\right)}+\frac{1}{2}\int e^{2 x} dx\\ &=\frac{-xe^{2 x}}{2\left(2x+1\right)}+\frac{1}{4} e^{2 x}+c \end{align*}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.