Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 8 - Integration Techniques, L'Hopital's Rule, and Improper Integrals - 8.2 Exercises - Page 521: 20

Answer

$$\int \frac{x e^{2 x}}{(2 x+1)^{2}} d x =-\frac{x^{2} e^{x^{2}}}{2\left(x^{2}+1\right)}+\frac{1}{2} e^{x^{2}} +c$$

Work Step by Step

Since $$ \int \frac{x^{3} e^{x^{2}}}{\left(x^{2}+1\right)^{2}} d x $$ integrate by parts , let \begin{align*} u&= x^2e^{ x^2}\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ dv=\frac{xdx}{\left(x^{2}+1\right)^{2}} \\ u&= 2 x e^{x^{2}}\left(x^{2}+1\right) d x\ \ \ \ \ v=-\frac{1}{2\left(x^{2}+1\right)} \end{align*} Then \begin{align*} \int \frac{x e^{2 x}}{(2 x+1)^{2}} d x&=uv-\int vdu\\ &=-\frac{x^{2} e^{x^{2}}}{2\left(x^{2}+1\right)}+\frac{1}{2} \int e^{x^{2}}(2 x) d x\\ &=-\frac{x^{2} e^{x^{2}}}{2\left(x^{2}+1\right)}+\frac{1}{2} e^{x^{2}} +c \end{align*}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.