Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 8 - Integration Techniques, L'Hopital's Rule, and Improper Integrals - 8.2 Exercises - Page 521: 22

Answer

$$\int \frac{x}{\sqrt{6 x+1}} d x =\frac{1}{18}\left(\frac{1}{3}(6x+1)^{3/2}-\sqrt{6x+1}\right)+c$$

Work Step by Step

Since $$\int \frac{x}{\sqrt{6 x+1}} d x$$ Let $$ u^2=6x+1 \ \ \to\ \ 2udu=6dx $$ Then \begin{align*} \int \frac{x}{\sqrt{6 x+1}} d x&=\int \frac{u^2-1}{\sqrt{u^2}} \frac{udu}{18}\\ &=\frac{1}{18}\int (u^2-1)du\\ &=\frac{1}{18}\left(\frac{1}{3}u^3-u\right)+c\\ &=\frac{1}{18}\left(\frac{1}{3}(6x+1)^{3/2}-\sqrt{6x+1}\right)+c \end{align*}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.