Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 8 - Integration Techniques, L'Hopital's Rule, and Improper Integrals - 8.2 Exercises - Page 521: 50

Answer

$-\frac{1}{8}e^{-2x}(4x^3 +6x^2 +6x +3) +C$

Work Step by Step

Use the tabular method to find the indefinite integral Let $u=x^3$, $dv=e^{-2x}dx$ Alternating Signs +,-,+,-,+ Derivatives of u $x^3, 3x^2, 6x, 6, 0$ Integrals of dv $e^{-2x}, -\frac{1}{2}e^{-2x}, \frac{1}{4}e^{-2x}, -\frac{1}{8}e^{-2x} , \frac{1}{16}e^{-2x}$ Use the alternating signs, multiply the first function of u with the first integration of dv, then repeat with the next values of u and dv, alternating the signs each time $-\frac{1}{2}x^3e^{-2x} - \frac{3}{4}x^2e^{-2x} - \frac{3}{4}xe^{-2x} - \frac{3}{8}e^{-2x} +C$ $-\frac{1}{8}e^{-2x}(4x^3 +6x^2+6x+3) +C$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.