Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 7 - Principles Of Integral Evaluation - 7.6 Using Computer Algebra Systems And Tables Of Integrals - Exercises Set 7.6 - Page 532: 79

Answer

$$V = 2\pi \left( {1 - 4{e^{ - 3}}} \right)$$

Work Step by Step

$$\eqalign{ & y = {e^{ - x}},{\text{ }}y = 0,{\text{ }}x = 0,{\text{ }}x = 3 \cr & {\text{Calculate the Volume by cylindrical shells about the }}y{\text{ - axis}} \cr & V = 2\pi \int_a^b {xf\left( x \right)} dx,{\text{ then}} \cr & {\text{The Volume of the solid is given by}} \cr & V = 2\pi \int_0^3 {x{e^{ - x}}} dx \cr & {\text{Integrating by parts}} \cr & u = x,{\text{ }}dv = {e^{ - x}}dx \cr & du = dx{\text{ }}v = - {e^{ - x}} \cr & \int {x{e^{ - x}}dx = - x{e^{ - x}} - \int {\left( { - {e^{ - x}}} \right)dx} } \cr & {\text{ }} = - x{e^{ - x}} + \int {{e^{ - x}}dx} \cr & {\text{ }} = - x{e^{ - x}} - {e^{ - x}} \cr & V = 2\pi \int_0^3 {x{e^{ - x}}} dx = - 2\pi \left[ {x{e^{ - x}} + {e^{ - x}}} \right]_0^3 \cr & V = - 2\pi \left[ {3{e^{ - 3}} + {e^{ - 3}}} \right] + 2\pi \left[ {0{e^0} + {e^{ - 0}}} \right] \cr & {\text{Simplifying}} \cr & V = - 2\pi \left[ {4{e^{ - 3}}} \right] + 2\pi \left[ 1 \right] \cr & V = 2\pi - 8\pi {e^{ - 3}} \cr & V = 2\pi \left( {1 - 4{e^{ - 3}}} \right) \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.