Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 7 - Principles Of Integral Evaluation - 7.6 Using Computer Algebra Systems And Tables Of Integrals - Exercises Set 7.6 - Page 532: 68

Answer

$$\frac{1}{5}\ln \left| {\frac{{\tan \left( {x/2} \right) - 1/3}}{{\tan \left( {x/2} \right) + 3}}} \right| + C$$

Work Step by Step

$$\eqalign{ & \int {\frac{{dx}}{{4\sin x - 3\cos x}}} \cr & {\text{Use the substitutions }}\left( 5 \right){\text{ from the page 528}}: \cr & \,\,u = \tan \left( {\frac{x}{2}} \right){\text{,}}\,\,\,\,dx = \frac{2}{{1 + {u^2}}}du,\,\,\,\sin x = \frac{{2u}}{{1 + {u^2}}}\,\,\,{\text{and}}\,\,\cos x = \frac{{1 - {u^2}}}{{1 + {u^2}}} \cr & \cr & \int {\frac{{dx}}{{4\sin x - 3\cos x}}} = \int {\frac{{\frac{2}{{1 + {u^2}}}du}}{{4\left( {\frac{{2u}}{{1 + {u^2}}}} \right) - 3\left( {\frac{{1 - {u^2}}}{{1 + {u^2}}}} \right)}}} \cr & {\text{simplify}} \cr & = \int {\frac{{\frac{2}{{1 + {u^2}}}du}}{{\frac{{8u}}{{1 + {u^2}}} - \frac{{3\left( {1 - {u^2}} \right)}}{{1 + {u^2}}}}}} \cr & = \int {\frac{2}{{8u - 3 + 3{u^2}}}} du \cr & = \int {\frac{2}{{3{u^2} + 8u - 3}}} du \cr & \cr & {\text{Complete the square for }}3{u^2} + 8u - 3 \cr & 3{u^2} + 8u - 3 = 3\left( {{u^2} + \frac{8}{3}u + \frac{{16}}{9}} \right) - 3 - 3\left( {\frac{{16}}{9}} \right) \cr & 3{u^2} + 8u - 3 = 3{\left( {u + \frac{4}{3}} \right)^2} - \frac{{25}}{2} \cr & \int {\frac{2}{{3{u^2} + 8u - 3}}} du = \frac{2}{3}\int {\frac{1}{{{{\left( {u + 4/3} \right)}^2} - {{\left( {25/3} \right)}^2}}}} du \cr & {\text{Let }}t = u + 4/3 \cr & = \frac{2}{3}\int {\frac{1}{{{t^2} - {{\left( {5/3} \right)}^2}}}} du \cr & \frac{2}{3}\frac{3}{{2\left( 5 \right)}}\ln \left| {\frac{{u - 5/3}}{{u + 5/3}}} \right| + C \cr & \frac{1}{5}\ln \left| {\frac{{u + 4/3 - 5/3}}{{u + 4/3 + 5/3}}} \right| + C \cr & \frac{1}{5}\ln \left| {\frac{{u - 1/3}}{{u + 3}}} \right| + C \cr & {\text{Where }}u = \tan \left( {\frac{x}{2}} \right) \cr & \frac{1}{5}\ln \left| {\frac{{\tan \left( {x/2} \right) - 1/3}}{{\tan \left( {x/2} \right) + 3}}} \right| + C \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.