Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 7 - Principles Of Integral Evaluation - 7.6 Using Computer Algebra Systems And Tables Of Integrals - Exercises Set 7.6 - Page 532: 52

Answer

$$\frac{1}{2}\ln \left( {{x^2} + 6x + 13} \right) - \frac{3}{2}{\tan ^{ - 1}}\left( {\frac{{x + 3}}{2}} \right) + C$$

Work Step by Step

$$\eqalign{ & \int {\frac{x}{{{x^2} + 6x + 13}}} dx \cr & {\text{completing the square for the denominator}} \cr & = {x^2} + 6x + {\left( {\frac{6}{2}} \right)^2} - {\left( {\frac{6}{2}} \right)^2} + 13 \cr & = {x^2} + 6x + 9 + 4 \cr & = {\left( {x + 3} \right)^2} + {2^2} \cr & \cr & \int {\frac{x}{{{x^2} + 6x + 13}}} dx = \int {\frac{x}{{{{\left( {x + 3} \right)}^2} + {2^2}}}} dx \cr & {\text{make }}u = x + 3,\,\,\,\,{\text{then}}\,\,\,\,\,\,du = dx \cr & \int {\frac{x}{{{{\left( {x + 3} \right)}^2} + {2^2}}}} dx = \int {\frac{{u - 3}}{{{u^2} + {2^2}}}} du \cr & = \int {\frac{u}{{{u^2} + {2^2}}}} du - \int {\frac{3}{{{u^2} + {2^2}}}} du \cr & = \frac{1}{2}\int {\frac{{2u}}{{{u^2} + {2^2}}}} du - 3\int {\frac{1}{{{u^2} + {2^2}}}} du \cr & \cr & {\text{Use the Endpaper Integral Table to evaluate the integral }}\int {\frac{1}{{{u^2} + {2^2}}}} du \cr & {\text{By formula 68}} \cr & \left( {68} \right):\,\,\,\,\,\,\int {\frac{{du}}{{{a^2} + {u^2}}}} = \frac{1}{a}{\tan ^{ - 1}}\left( {\frac{u}{a}} \right) + C \cr & = \frac{1}{2}\ln \left( {{u^2} + {2^2}} \right) - 3\left( {\frac{1}{2}{{\tan }^{ - 1}}\left( {\frac{u}{2}} \right)} \right) + C \cr & \cr & {\text{write in terms of }}x{\text{; replace }}x + 3 {\text{ for }}u \cr & = \frac{1}{2}\ln \left( {{{\left( {x + 3} \right)}^2} + {2^2}} \right) - 3\left( {\frac{1}{2}{{\tan }^{ - 1}}\left( {\frac{{x + 3}}{2}} \right)} \right) + C \cr & {\text{then}} \cr & = \frac{1}{2}\ln \left( {{x^2} + 6x + 13} \right) - 3\left( {\frac{1}{2}{{\tan }^{ - 1}}\left( {\frac{{x + 3}}{2}} \right)} \right) + C \cr & = \frac{1}{2}\ln \left( {{x^2} + 6x + 13} \right) - \frac{3}{2}{\tan ^{ - 1}}\left( {\frac{{x + 3}}{2}} \right) + C \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.