Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 7 - Principles Of Integral Evaluation - 7.6 Using Computer Algebra Systems And Tables Of Integrals - Exercises Set 7.6 - Page 532: 63

Answer

$$\frac{{{{\left( {1 + {x^2}} \right)}^{3/2}}}}{3} - \sqrt {1 + {x^2}} + C$$

Work Step by Step

$$\eqalign{ & \int {\frac{{{x^3}}}{{\sqrt {1 + {x^2}} }}} dx \cr & {\text{Taking the hint on the book making a substitution of the form }}u = {\left( {x + a} \right)^{1/n}} \cr & {\text{Take }}\,\,\,u = {\left( {1 + {x^2}} \right)^{1/2}} \to \,\,\,\,\,\,\,\,{u^2} = 1 + {x^2},\,\,\,\,\,\,\,2udu = 2xdx\,\,\,\, \cr & \cr & {\text{write the integrand in terms of }}u \cr & \int {\frac{{{x^3}}}{{\sqrt {1 + {x^2}} }}} dx = \int {\frac{{{x^3}}}{u}} \left( {\frac{{2udu}}{{2x}}} \right) \cr & = \int {{x^2}} du \cr & = \int {\left( {{u^2} - 1} \right)} du \cr & \cr & {\text{integrating}} \cr & = \frac{{{u^3}}}{3} - u + C \cr & \cr & {\text{write the integrand in terms of }}x;{\text{ replace }}u = {\left( {1 + {x^2}} \right)^{1/2}} \cr & = \frac{{{{\left( {{{\left( {1 + {x^2}} \right)}^{1/2}}} \right)}^3}}}{3} - {\left( {1 + {x^2}} \right)^{1/2}} + C \cr & = \frac{{{{\left( {1 + {x^2}} \right)}^{3/2}}}}{3} - \sqrt {1 + {x^2}} + C \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.