Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 7 - Principles Of Integral Evaluation - 7.6 Using Computer Algebra Systems And Tables Of Integrals - Exercises Set 7.6 - Page 532: 71

Answer

$$x = \frac{{4{e^2}}}{{1 + {e^2}}}$$

Work Step by Step

$$\eqalign{ & \int_2^x {\frac{1}{{t\left( {4 - t} \right)}}} dt \cr & {\text{Decompose the integrand into partial fractions}} \cr & \frac{1}{{t\left( {4 - t} \right)}} = \frac{A}{t} + \frac{B}{{4 - t}} \cr & 1 = A\left( {4 - t} \right) + Bt \cr & {\text{Let }}t = 0 \Rightarrow A = \frac{1}{4} \cr & {\text{Let }}t = 4 \Rightarrow B = \frac{1}{4} \cr & \frac{1}{{t\left( {4 - t} \right)}} = \frac{1}{{4t}} + \frac{1}{{4\left( {4 - t} \right)}} \cr & {\text{,then}} \cr & \int_2^x {\frac{1}{{t\left( {4 - t} \right)}}} dt = \int_2^x {\left( {\frac{1}{{4t}} + \frac{1}{{4\left( {4 - t} \right)}}} \right)} dt \cr & \int_2^x {\left( {\frac{1}{{4t}} + \frac{1}{{4\left( {4 - t} \right)}}} \right)} dt = \frac{1}{2} \cr & {\text{Integrating}} \cr & \left[ {\frac{1}{4}\ln t - \frac{1}{4}\ln \left| {4 - t} \right|} \right]_2^x = \frac{1}{2} \cr & \left[ {\frac{1}{4}\ln \left| {\frac{t}{{4 - t}}} \right|} \right]_2^x = \frac{1}{2} \cr & \frac{1}{4}\ln \left| {\frac{x}{{4 - x}}} \right| - \frac{1}{4}\ln \left| {\frac{2}{{4 - 2}}} \right| = \frac{1}{2} \cr & {\text{Solve for }}x \cr & \frac{1}{4}\ln \left| {\frac{x}{{4 - x}}} \right| - \frac{1}{4}\ln \left| 1 \right| = \frac{1}{2} \cr & \frac{1}{4}\ln \left| {\frac{x}{{4 - x}}} \right| = \frac{1}{2} \cr & \ln \left| {\frac{x}{{4 - x}}} \right| = 2 \cr & \frac{x}{{4 - x}} = {e^2} \cr & x = 4{e^2} - {e^2}x \cr & x + {e^2}x = 4{e^2} \cr & x = \frac{{4{e^2}}}{{1 + {e^2}}} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.