Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 7 - Principles Of Integral Evaluation - 7.6 Using Computer Algebra Systems And Tables Of Integrals - Exercises Set 7.6 - Page 532: 64

Answer

$$\frac{{5{{\left( {x + 3} \right)}^{9/5}}}}{9} - \frac{{3{{\left( {x + 3} \right)}^{4/5}}}}{4} + C$$

Work Step by Step

$$\eqalign{ & \int {\frac{x}{{{{\left( {x + 3} \right)}^{1/5}}}}} dx \cr & {\text{Taking the hint on the book making a substitution of the form }}u = {\left( {x + a} \right)^{1/n}} \cr & {\text{Take }}\,\,\,u = {\left( {x + 3} \right)^{1/5}} \to \,\,\,\,\,\,\,\,{u^5} = x + 3,\,\,\,\,\,\,\,5{u^4}du = dx\,\,\,\, \cr & \cr & {\text{write the integrand in terms of }}u \cr & \int {\frac{x}{{{{\left( {x + 3} \right)}^{1/5}}}}} dx = \int {\frac{{{u^5} - 3}}{u}} \left( {5{u^4}du} \right) \cr & = 5\int {\left( {{u^8} - 3{u^3}} \right)} du \cr & \cr & {\text{integrating}} \cr & = \frac{{5{u^9}}}{9} - \frac{{3{u^4}}}{4} + C \cr & \cr & {\text{write the integrand in terms of }}x;{\text{ replace }}u = {\left( {x + 3} \right)^{1/5}} \cr & = \frac{{5{{\left( {{{\left( {x + 3} \right)}^{1/5}}} \right)}^9}}}{9} - \frac{{3{{\left( {{{\left( {x + 3} \right)}^{1/5}}} \right)}^4}}}{4} + C \cr & = \frac{{5{{\left( {x + 3} \right)}^{9/5}}}}{9} - \frac{{3{{\left( {x + 3} \right)}^{4/5}}}}{4} + C \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.