Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 7 - Principles Of Integral Evaluation - 7.6 Using Computer Algebra Systems And Tables Of Integrals - Exercises Set 7.6 - Page 532: 55

Answer

$$\frac{2}{{45}}{\left( {{x^3} + 1} \right)^{3/2}}\left( {3{x^3} - 8} \right) + C$$

Work Step by Step

$$\eqalign{ & \int {{x^5}\sqrt {{x^3} + 1} } dx \cr & {\text{write as}} \cr & = \int {{x^3}\sqrt {{x^3} + 1} \left( {{x^2}dx} \right)} \cr & {\text{Taking the hint on the book making a substitution of the form }}u = {\left( {x + a} \right)^{1/n}} \cr & {\text{Then}}{\text{,}} \cr & {\text{Take }}\,\,\,u = {\left( {{x^3} + 1} \right)^{1/2}} \to \,\,\,\,\,\,\,\,{u^2} = {x^3} + 1,\,\,\,\,\,\,2udu = 3{x^2}dx \cr & \cr & {\text{write the integrand in terms of }}u \cr & = \int {{x^3}\sqrt {{x^3} + 1} \left( {{x^2}dx} \right)} = \int {\left( {{u^2} - 1} \right)u\left( {{x^2}} \right)\left( {\frac{{2udu}}{{3{x^2}}}} \right)} \cr & = \frac{2}{3}\int {{u^2}\left( {{u^2} - 1} \right)du} \cr & = \frac{2}{3}\int {\left( {{u^4} - {u^2}} \right)} du \cr & \cr & {\text{integrating}} \cr & = \frac{2}{3}\left( {\frac{{{u^5}}}{5} - \frac{{{u^3}}}{3}} \right) + C \cr & = \frac{2}{{45}}\left( {3{u^5} - 5{u^3}} \right) + C \cr & = \frac{2}{{45}}{u^3}\left( {3{u^2} - 5} \right) + C \cr & {\text{write the integrand in terms of }}x;{\text{ replace }}u = {\left( {{x^3} + 1} \right)^{1/2}} \cr & = \frac{2}{{45}}{\left( {{{\left( {{x^3} + 1} \right)}^{1/2}}} \right)^3}\left( {3{{\left( {{{\left( {{x^3} + 1} \right)}^{1/2}}} \right)}^2} - 5} \right) + C \cr & = \frac{2}{{45}}{\left( {{x^3} + 1} \right)^{3/2}}\left( {3{x^3} - 3 - 5} \right) + C \cr & = \frac{2}{{45}}{\left( {{x^3} + 1} \right)^{3/2}}\left( {3{x^3} - 8} \right) + C \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.