Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 7 - Principles Of Integral Evaluation - 7.6 Using Computer Algebra Systems And Tables Of Integrals - Exercises Set 7.6 - Page 532: 53

Answer

$$\frac{2}{{15}}{\left( {x - 2} \right)^{3/2}}\left( {3x + 4} \right) + C$$

Work Step by Step

$$\eqalign{ & \int {x\sqrt {x - 2} } dx \cr &\text{We find} & \\ u = {\left( {x + a} \right)^{1/n}} \cr & {\text{Then}}{\text{,}} \cr & {\text{Take }}\,\,\,u = {\left( {x - 2} \right)^{1/2}} \to \,\,\,\,\,\,\,\,{u^2} = x - 2,\,\,\,\,\,\,2udu = dx \cr & \cr & {\text{write the integrand in terms of }}u \cr & \int {x\sqrt {x - 2} } dx = \int {\left( {{u^2} + 2} \right)u} \left( {2udu} \right) \cr & = \int {\left( {{u^2} + 2} \right)} \left( {2{u^2}du} \right) \cr & = \int {\left( {2{u^4} + 4{u^2}} \right)} du \cr & \cr & {\text{integrating}} \cr & = \frac{{2{u^5}}}{5} + \frac{{4{u^3}}}{3} + C \cr & {\text{factoring}} \cr & = \frac{2}{{15}}{u^3}\left( {3{u^2} + 10} \right) + C \cr & \cr & {\text{write the integrand in terms of }}x{\text{; replace }}u = {\left( {x - 2} \right)^{1/2}} \cr & = \frac{2}{{15}}{\left( {{{\left( {x - 2} \right)}^{1/2}}} \right)^3}\left( {3{{\left( {{{\left( {x - 2} \right)}^{1/2}}} \right)}^2} + 10} \right) + C \cr & = \frac{2}{{15}}{\left( {x - 2} \right)^{3/2}}\left( {3x - 6 + 10} \right) + C \cr & = \frac{2}{{15}}{\left( {x - 2} \right)^{3/2}}\left( {3x + 4} \right) + C \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.