Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 7 - Principles Of Integral Evaluation - 7.6 Using Computer Algebra Systems And Tables Of Integrals - Exercises Set 7.6 - Page 532: 77

Answer

$$V = {\pi ^2} - 2\pi $$

Work Step by Step

$$\eqalign{ & y = \cos x,{\text{ }}y = 0,{\text{ }}x = 0,{\text{ }}x = \pi /2 \cr & {\text{Calculate the Volume by cylindrical shells about the }}y{\text{ - axis}} \cr & V = 2\pi \int_a^b {xf\left( x \right)} dx,{\text{ then}} \cr & {\text{The Volume of the solid is given by}} \cr & V = 2\pi \int_0^{\pi /2} {x\cos x} dx \cr & {\text{Integrating using the formula }}\int {u\cos u} du = \cos u + u\sin u + C \cr & V = 2\pi \left[ {\cos x + x\sin x} \right]_0^{\pi /2} \cr & V = 2\pi \left[ {\cos \left( {\frac{\pi }{2}} \right) + \frac{\pi }{2}\sin \left( {\frac{\pi }{2}} \right)} \right] - 2\pi \left[ {\cos \left( 0 \right) + \frac{\pi }{2}\sin \left( 0 \right)} \right] \cr & {\text{Simplifying}} \cr & V = 2\pi \left[ {\frac{\pi }{2}} \right] - 2\pi \left[ {1 + 0} \right] \cr & V = {\pi ^2} - 2\pi \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.