Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 7 - Principles Of Integral Evaluation - 7.6 Using Computer Algebra Systems And Tables Of Integrals - Exercises Set 7.6 - Page 532: 62

Answer

$$ - 4\sqrt x - x - 4\ln \left| {1 - \sqrt x } \right| + C$$

Work Step by Step

$$\eqalign{ & \int {\frac{{1 + \sqrt x }}{{1 - \sqrt x }}} dx \cr & {\text{Taking the hint on the book making a substitution of the form }}u = {\left( {x + a} \right)^{1/n}} \cr & {\text{Take }}\,\,\,u = {x^{1/2}} \to \,\,\,\,\,\,\,\,{u^2} = x,\,\,\,\,\,\,\,2udu = dx\,\,\,\, \cr & \cr & {\text{write the integrand in terms of }}u \cr & \int {\frac{{1 + \sqrt x }}{{1 - \sqrt x }}} dx = \int {\frac{{1 + u}}{{1 - u}}} \left( {2udu} \right) \cr & = \int {\frac{{2{u^2} + 2u}}{{1 - u}}} du \cr & \cr & {\text{perform the long division}} \cr & \frac{{2{u^2} + 2u}}{{1 - u}} = - 4 - 2u + \frac{4}{{1 - u}} \cr & \int {\frac{{2{u^2} + 2u}}{{1 - u}}} du = \int {\left( { - 4 - 2u + \frac{4}{{1 - u}}} \right)} du \cr & \cr & {\text{integrating}} \cr & = - 4u - {u^2} - 4\ln \left| {1 - u} \right| + C \cr & \cr & {\text{write the integrand in terms of }}x;{\text{ replace }}u = {x^{1/2}} \cr & = - 4{x^{1/2}} - x - 4\ln \left| {1 - {x^{1/2}}} \right| + C \cr & = - 4\sqrt x - x - 4\ln \left| {1 - \sqrt x } \right| + C \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.