Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 7 - Principles Of Integral Evaluation - 7.6 Using Computer Algebra Systems And Tables Of Integrals - Exercises Set 7.6 - Page 532: 59

Answer

$$4\ln \left| {\frac{{{x^{1/4}}}}{{1 - {x^{1/4}}}}} \right| + C$$

Work Step by Step

$$\eqalign{ & \int {\frac{{dx}}{{x\left( {1 - {x^{1/4}}} \right)}}} \cr & {\text{Taking the hint on the book making a substitution of the form }}u = {x^{1/n}} \cr & {\text{Take }}\,\,\,u = {x^{1/4}} \to \,\,\,\,\,\,\,\,{u^4} = x,\,\,\,\,\,\,\,4{u^3}du = dx\,\,\,\, \cr & \cr & {\text{write the integrand in terms of }}u \cr & \int {\frac{{dx}}{{x\left( {1 - {x^{1/4}}} \right)}}} = \int {\frac{{4{u^3}du}}{{{u^4}\left( {1 - u} \right)}}} \cr & = \int {\frac{{4du}}{{u\left( {1 - u} \right)}}} \cr & \cr & {\text{Integrate by tables using the formula }}\int {\frac{{du}}{{u\left( {a + bu} \right)}}} = \frac{1}{a}\ln \left| {\frac{u}{{a + bu}}} \right| + C \cr & \int {\frac{{4du}}{{u\left( {1 - u} \right)}}} = 4\left( {\frac{1}{1}\ln \left| {\frac{u}{{1 - u}}} \right|} \right) + C \cr & = 4\ln \left| {\frac{u}{{1 - u}}} \right| + C \cr & \cr & {\text{write the integrand in terms of }}x;{\text{ replace }}u = {x^{1/4}} \cr & = 4\ln \left| {\frac{{{x^{1/4}}}}{{1 - {x^{1/4}}}}} \right| + C \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.