Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 7 - Principles Of Integral Evaluation - 7.6 Using Computer Algebra Systems And Tables Of Integrals - Exercises Set 7.6 - Page 532: 73

Answer

$${\text{area}} = 6 + \frac{{25}}{2}{\sin ^{ - 1}}\left( {\frac{4}{5}} \right)$$

Work Step by Step

$$\eqalign{ & {\text{Let }}y = \sqrt {25 - {x^2}} ,\,\,\,\,y = 0,\,\,\,x = 0,\,\,\,x = 4 \cr & \cr & {\text{We can represent the enclosed by the curves as}} \cr & {\text{area}} = \int_0^4 {\sqrt {25 - {x^2}} } dx \cr & \cr & {\text{integrate by tables using the formula }} \cr & \int {\sqrt {{a^2} - {x^2}} } dx = \frac{x}{2}\sqrt {{a^2} - {x^2}} + \frac{{{a^2}}}{2}{\sin ^{ - 1}}\left( {\frac{x}{a}} \right) + C \cr & {\text{area}} = \int_0^4 {\sqrt {25 - {x^2}} } dx = \left[ {\frac{x}{2}\sqrt {25 - {x^2}} + \frac{{25}}{2}{{\sin }^{ - 1}}\left( {\frac{x}{5}} \right)} \right]_0^4 \cr & {\text{area}} = \left[ {\frac{4}{2}\sqrt {25 - {4^2}} + \frac{{25}}{2}{{\sin }^{ - 1}}\left( {\frac{4}{5}} \right)} \right] - \left[ {\frac{0}{2}\sqrt {25 - {0^2}} + \frac{{25}}{2}{{\sin }^{ - 1}}\left( {\frac{0}{5}} \right)} \right] \cr & {\text{simplify}} \cr & {\text{area}} = \left[ {2\sqrt 9 + \frac{{25}}{2}{{\sin }^{ - 1}}\left( {\frac{4}{5}} \right)} \right] \cr & {\text{area}} = 6 + \frac{{25}}{2}{\sin ^{ - 1}}\left( {\frac{4}{5}} \right) \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.