Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 7 - Principles Of Integral Evaluation - 7.6 Using Computer Algebra Systems And Tables Of Integrals - Exercises Set 7.6 - Page 532: 57

Answer

$$\frac{3}{2}\ln \left| {{x^{2/3}} - 1} \right| + C$$

Work Step by Step

$$\eqalign{ & \int {\frac{{dx}}{{x - \root 3 \of x }}} \cr & \cr & {\text{Taking the hint on the book making a substitution of the form }}u = {x^{1/n}} \cr & {\text{Then}}{\text{,}} \cr & {\text{Take }}\,\,\,u = {x^{1/3}} \to \,\,\,\,\,\,\,\,{u^3} = x,\,\,\,\,\,\,\,\,3{u^2}du = dx\,\,\,\, \cr & \cr & {\text{write the integrand in terms of }}u \cr & \int {\frac{{dx}}{{x - \root 3 \of x }}} = \int {\frac{{3{u^2}du}}{{{u^3} - u}}} \cr & = \int {\frac{{3{u^2}du}}{{u\left( {{u^2} - 1} \right)}}} \cr & = \int {\frac{{3u}}{{{u^2} - 1}}du} \cr & = \frac{3}{2}\int {\frac{{2u}}{{{u^2} - 1}}du} \cr & \cr & {\text{integrating}} \cr & = \frac{3}{2}\ln \left| {{u^2} - 1} \right| + C \cr & \cr & {\text{write the integrand in terms of }}x;{\text{ replace }}u = {x^{1/3}} \cr & = \frac{3}{2}\ln \left| {{{\left( {{x^{1/3}}} \right)}^2} - 1} \right| + C \cr & = \frac{3}{2}\ln \left| {{x^{2/3}} - 1} \right| + C \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.