Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 7 - Principles Of Integral Evaluation - 7.6 Using Computer Algebra Systems And Tables Of Integrals - Exercises Set 7.6 - Page 532: 60

Answer

$$2\left( {\sqrt x - {{\tan }^{ - 1}}\sqrt x } \right) + C$$

Work Step by Step

$$\eqalign{ & \int {\frac{{\sqrt x }}{{x + 1}}} dx \cr & {\text{Taking the hint on the book making a substitution of the form }}u = {x^{1/n}} \cr & {\text{Take }}\,\,\,u = {x^{1/2}} \to \,\,\,\,\,\,\,\,{u^2} = x,\,\,\,\,\,\,\,2udu = dx\,\,\,\, \cr & \cr & {\text{write the integrand in terms of }}u \cr & \int {\frac{{\sqrt x }}{{x + 1}}} dx = \int {\frac{u}{{{u^2} + 1}}} \left( {2udu} \right) \cr & = \int {\frac{{2{u^2}}}{{{u^2} + 1}}} du = 2\int {\frac{{{u^2} + 1 - 1}}{{{u^2} + 1}}} du \cr & = 2\int {\left( {1 - \frac{1}{{{u^2} + 1}}} \right)} du \cr & \cr & {\text{Integrate}} \cr & = 2\left( {u - {{\tan }^{ - 1}}u} \right) + C \cr & \cr & {\text{write the integrand in terms of }}x; {\text{ replace }}u = {x^{1/2}} \cr & = 2\left( {{x^{1/2}} - {{\tan }^{ - 1}}{x^{1/2}}} \right) + C \cr & = 2\left( {\sqrt x - {{\tan }^{ - 1}}\sqrt x } \right) + C \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.