Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 7 - Principles Of Integral Evaluation - 7.6 Using Computer Algebra Systems And Tables Of Integrals - Exercises Set 7.6 - Page 532: 70

Answer

$$x - \tan \left( {\frac{x}{2}} \right) + C$$

Work Step by Step

$$\eqalign{ & \int {\frac{{\sin x}}{{\sin x + \tan x}}} dx \cr & {\text{Use substitution }}\left( 5 \right){\text{ from page 528}}: \cr & \,\,u = \tan \left( {\frac{x}{2}} \right){\text{,}}\,\,\,\,\,\,dx = \frac{2}{{1 + {u^2}}}du,\,\,\,\,\,\,\sin x = \frac{{2u}}{{1 + {u^2}}}\,\,\,\,\,{\text{ and}}\,{\text{ }}\,\,\cos x = \frac{{1 - {u^2}}}{{1 + {u^2}}} \cr & \cr & \int {\frac{{\sin x}}{{\sin x + \tan x}}} dx = \int {\frac{{\frac{{2u}}{{1 + {u^2}}}}}{{\frac{{2u}}{{1 + {u^2}}} + \frac{{2u}}{{1 - {u^2}}}}}\left( {\frac{2}{{1 + {u^2}}}du} \right)} \cr & {\text{simplify}} \cr & = \int {\frac{{\frac{{2u}}{{1 + {u^2}}}}}{{\frac{{2u\left( {1 - {u^2}} \right) + 2u\left( {1 + {u^2}} \right)}}{{\left( {1 + {u^2}} \right)\left( {1 - {u^2}} \right)}}}}\left( {\frac{2}{{1 + {u^2}}}du} \right)} \cr & = \int {\frac{{2\left( {1 - {u^2}} \right)du}}{{2u - 2{u^3} + 2u + 2{u^3}}}} \cr & = \int {\frac{{4u\left( {1 - {u^2}} \right)du}}{{4u\left( {1 + {u^2}} \right)}}} \cr & = \int {\frac{{1 - {u^2}}}{{1 + {u^2}}}} du \cr & = \int {\left( {\frac{2}{{1 + {u^2}}} - 1} \right)} du \cr & {\text{Integrate}} \cr & = 2{\tan ^{ - 1}}u - u + C \cr & \cr & {\text{write in terms of }}x{\text{; substitute }}u = \tan \left( {\frac{x}{2}} \right) \cr & = 2{\tan ^{ - 1}}\left( {\tan \left( {\frac{x}{2}} \right)} \right) - \tan \left( {\frac{x}{2}} \right) + C \cr & = 2\left( {\frac{x}{2}} \right) - \tan \left( {\frac{x}{2}} \right) + C \cr & = x - \tan \left( {\frac{x}{2}} \right) + C \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.