Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 7 - Principles Of Integral Evaluation - 7.6 Using Computer Algebra Systems And Tables Of Integrals - Exercises Set 7.6 - Page 532: 56

Answer

$$\frac{2}{3}{\tan ^{ - 1}}{\left( {{x^3} - 1} \right)^{1/2}} + C$$

Work Step by Step

$$\eqalign{ & \int {\frac{1}{{x\sqrt {{x^3} - 1} }}} dx \cr & {\text{Taking the hint on the book making a substitution of the form }}u = {\left( {x + a} \right)^{1/n}} \cr & {\text{Then}}{\text{,}} \cr & {\text{Take }}\,\,\,u = {\left( {{x^3} - 1} \right)^{1/2}} \to \,\,\,\,\,\,\,\,{u^2} = {x^3} - 1,\,\,\,\,\,{x^3} = {u^2} + 1\,\,\,\, \cr & 2udu = 3{x^2}dx,\,\,\,\,\,\,\,\,dx = \frac{{2udu}}{{3{x^2}}} \cr & \cr & {\text{write the integrand in terms of }}u \cr & \int {\frac{1}{{x\sqrt {{x^3} - 1} }}} dx = \int {\frac{1}{{x\left( u \right)}}} \left( {\frac{{2udu}}{{3{x^2}}}} \right) = \int {\frac{{2u}}{{3u{x^3}}}du} \cr & = \int {\frac{{2u}}{{3u\left( {{u^2} + 1} \right)}}du} \cr & = \frac{2}{3}\int {\frac{1}{{{u^2} + 1}}du} \cr & \cr & {\text{integrating}} \cr & = \frac{2}{3}{\tan ^{ - 1}}u + C \cr & \cr & {\text{write the integrand in terms of }}x;{\text{ replace }}u = {\left( {{x^3} - 1} \right)^{1/2}} \cr & = \frac{2}{3}{\tan ^{ - 1}}{\left( {{x^3} - 1} \right)^{1/2}} + C \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.