Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 7 - Principles Of Integral Evaluation - 7.6 Using Computer Algebra Systems And Tables Of Integrals - Exercises Set 7.6 - Page 532: 54

Answer

$$\frac{2}{3}{\left( {x + 1} \right)^{3/2}} - 2\sqrt {x + 1} + C$$

Work Step by Step

$$\eqalign{ & \int {\frac{x}{{\sqrt {x + 1} }}} dx \cr & {\text{Let }}u = {\left( {x + 1} \right)^{1/2}}{\text{ }} \Rightarrow {\text{ }}{u^2} = x + 1{\text{ }} \Rightarrow {\text{ }}2udu = dx \cr & {\text{Apply the substitution}} \cr & \int {\frac{x}{{\sqrt {x + 1} }}} dx = \int {\frac{{{u^2} - 1}}{u}} \left( {2udu} \right) \cr & {\text{ }} = 2\int {\left( {{u^2} - 1} \right)} du \cr & {\text{Integrating}} \cr & {\text{ }} = 2\left( {\frac{1}{3}{u^3} - u} \right) + C \cr & {\text{ }} = \frac{2}{3}{u^3} - 2u + C \cr & {\text{Substitute - back }}u = {\left( {x + 1} \right)^{1/2}} \cr & {\text{ }} = \frac{2}{3}{\left( {{{\left( {x + 1} \right)}^{1/2}}} \right)^3} - 2{\left( {x + 1} \right)^{1/2}} + C \cr & {\text{ }} = \frac{2}{3}{\left( {x + 1} \right)^{3/2}} - 2\sqrt {x + 1} + C \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.