Intermediate Algebra (6th Edition)

Published by Pearson
ISBN 10: 0321785045
ISBN 13: 978-0-32178-504-6

Chapter 6 - Section 6.3 - Simplifying Complex Fractions - Exercise Set - Page 361: 17

Answer

$\dfrac{x}{5(x-2)}$

Work Step by Step

The given expression, $ \dfrac{\dfrac{4}{5-x}+\dfrac{5}{x-5}}{\dfrac{2}{x}+\dfrac{3}{x-5}} ,$ simplifies to \begin{array}{l}\require{cancel} \dfrac{\dfrac{4}{-(x-5)}+\dfrac{5}{x-5}}{\dfrac{(x-5)(2)+x(3)}{x(x-5)}} \\\\= \dfrac{\dfrac{-4+5}{x-5}}{\dfrac{2x-10+3x}{x(x-5)}} \\\\= \dfrac{\dfrac{1}{x-5}}{\dfrac{5x-10}{x(x-5)}} \\\\= \dfrac{\dfrac{1}{x-5}}{\dfrac{5(x-2)}{x(x-5)}} \\\\= \dfrac{1}{x-5}\div\dfrac{5(x-2)}{x(x-5)} \\\\= \dfrac{1}{x-5}\cdot\dfrac{x(x-5)}{5(x-2)} \\\\= \dfrac{1}{\cancel{x-5}}\cdot\dfrac{x(\cancel{x-5})}{5(x-2)} \\\\= \dfrac{x}{5(x-2)} .\end{array}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.