Intermediate Algebra (6th Edition)

Published by Pearson
ISBN 10: 0321785045
ISBN 13: 978-0-32178-504-6

Chapter 6 - Section 6.3 - Simplifying Complex Fractions - Exercise Set - Page 361: 21

Answer

$\dfrac{x}{2-3x}$

Work Step by Step

The given expression, $ \dfrac{\dfrac{2}{x}+3}{\dfrac{4}{x^2}-9} ,$ simplifies to \begin{array}{l}\require{cancel} \dfrac{\dfrac{2+x(3)}{x}}{\dfrac{4-x^2(9)}{x^2}} \\\\= \dfrac{\dfrac{2+3x}{x}}{\dfrac{4-9x^2}{x^2}} \\\\= \dfrac{2+3x}{x}\div\dfrac{4-9x^2}{x^2} \\\\= \dfrac{2+3x}{x}\cdot\dfrac{x^2}{4-9x^2} \\\\= \dfrac{2+3x}{x}\cdot\dfrac{x\cdot x}{(2-3x)(2+3x)} \\\\= \dfrac{\cancel{2+3x}}{\cancel{x}}\cdot\dfrac{x\cdot \cancel{x}}{(2-3x)(\cancel{2+3x})} \\\\= \dfrac{x}{2-3x} .\end{array}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.