Intermediate Algebra (6th Edition)

Published by Pearson
ISBN 10: 0321785045
ISBN 13: 978-0-32178-504-6

Chapter 6 - Section 6.3 - Simplifying Complex Fractions - Exercise Set - Page 361: 23

Answer

$-\dfrac{y}{x+y}$

Work Step by Step

The given expression, $ \dfrac{1-\dfrac{x}{y}}{\dfrac{x^2}{y^2}-1} ,$ simplifies to \begin{array}{l}\require{cancel} \dfrac{\dfrac{y-x}{y}}{\dfrac{x^2-y^2}{y^2}} \\\\= \dfrac{y-x}{y}\div\dfrac{x^2-y^2}{y^2} \\\\= \dfrac{y-x}{y}\cdot\dfrac{y^2}{x^2-y^2} \\\\= \dfrac{-(x-y)}{y}\cdot\dfrac{y\cdot y}{(x+y)(x-y)} \\\\= \dfrac{-(\cancel{x-y})}{\cancel{y}}\cdot\dfrac{y\cdot \cancel{y}}{(x+y)(\cancel{x-y})} \\\\= \dfrac{-y}{x+y} \\\\= -\dfrac{y}{x+y} .\end{array}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.