Intermediate Algebra (6th Edition)

Published by Pearson
ISBN 10: 0321785045
ISBN 13: 978-0-32178-504-6

Chapter 6 - Section 6.3 - Simplifying Complex Fractions - Exercise Set - Page 361: 35

Answer

$\dfrac{xy^{2}}{y^2+x^2}$

Work Step by Step

The given expression, $ \dfrac{x^{-1}}{x^{-2}+y^{-2}} ,$ simplifies to \begin{array}{l}\require{cancel} \dfrac{\dfrac{1}{x^1}}{\dfrac{1}{x^{2}}+\dfrac{1}{y^{2}}} \\\\= \dfrac{\dfrac{1}{x}}{\dfrac{y^2+x^2}{x^{2}y^{2}}} \\\\= \dfrac{1}{x}\div\dfrac{y^2+x^2}{x^{2}y^{2}} \\\\= \dfrac{1}{x}\cdot\dfrac{x^{2}y^{2}}{y^2+x^2} \\\\= \dfrac{1}{\cancel{x}}\cdot\dfrac{\cancel{x}\cdot xy^{2}}{y^2+x^2} \\\\= \dfrac{xy^{2}}{y^2+x^2} .\end{array}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.