Intermediate Algebra (6th Edition)

Published by Pearson
ISBN 10: 0321785045
ISBN 13: 978-0-32178-504-6

Chapter 6 - Section 6.3 - Simplifying Complex Fractions - Exercise Set - Page 361: 18

Answer

$\dfrac{5x}{8}$

Work Step by Step

The given expression, $ \dfrac{\dfrac{3}{x-4}-\dfrac{2}{4-x}}{\dfrac{2}{x-4}-\dfrac{2}{x}} ,$ simplifies to \begin{array}{l}\require{cancel} \dfrac{\dfrac{3}{x-4}-\dfrac{2}{-(x-4)}}{\dfrac{2}{x-4}-\dfrac{2}{x}} \\\\= \dfrac{\dfrac{3}{x-4}+\dfrac{2}{x-4}}{\dfrac{2}{x-4}-\dfrac{2}{x}} \\\\= \dfrac{\dfrac{3+2}{x-4}}{\dfrac{x(2)-(x-4)(2)}{x(x-4)}} \\\\= \dfrac{\dfrac{5}{x-4}}{\dfrac{2x-2x+8}{x(x-4)}} \\\\= \dfrac{\dfrac{5}{x-4}}{\dfrac{8}{x(x-4)}} \\\\= \dfrac{5}{x-4}\div\dfrac{8}{x(x-4)} \\\\= \dfrac{5}{x-4}\cdot\dfrac{x(x-4)}{8} \\\\= \dfrac{5}{\cancel{x-4}}\cdot\dfrac{x(\cancel{x-4})}{8} \\\\= \dfrac{5x}{8} .\end{array}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.