Intermediate Algebra (6th Edition)

Published by Pearson
ISBN 10: 0321785045
ISBN 13: 978-0-32178-504-6

Chapter 6 - Section 6.3 - Simplifying Complex Fractions - Exercise Set - Page 361: 38

Answer

$\dfrac{xy(y+x)}{3y^2+5x^2}$

Work Step by Step

The given expression, $ \dfrac{x^{-1}+y^{-1}}{3x^{-2}+5y^{-2}} ,$ simplifies to \begin{array}{l}\require{cancel} \dfrac{\dfrac{1}{x^1}+\dfrac{1}{y^1}}{\dfrac{3}{x^2}+\dfrac{5}{y^2}} \\\\= \dfrac{\dfrac{y+x}{xy}}{\dfrac{3y^2+5x^2}{x^2y^2}} \\\\= \dfrac{y+x}{xy}\div\dfrac{3y^2+5x^2}{x^2y^2} \\\\= \dfrac{y+x}{xy}\cdot\dfrac{x^2y^2}{3y^2+5x^2} \\\\= \dfrac{y+x}{\cancel{xy}}\cdot\dfrac{\cancel{xy}\cdot xy}{3y^2+5x^2} \\\\= \dfrac{xy(y+x)}{3y^2+5x^2} .\end{array}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.