Intermediate Algebra (6th Edition)

Published by Pearson
ISBN 10: 0321785045
ISBN 13: 978-0-32178-504-6

Chapter 6 - Section 6.3 - Simplifying Complex Fractions - Exercise Set - Page 361: 50

Answer

$\dfrac{3xy(y+x)}{(2y+3x)(2y-3x)}$

Work Step by Step

The given expression, $ \dfrac{3x^{-1}+3y^{-1}}{4x^{-2}-9y^{-2}} ,$ simplifies to \begin{array}{l}\require{cancel} \dfrac{\dfrac{3}{x}+\dfrac{3}{y}}{\dfrac{4}{x^2}-\dfrac{9}{y^2}} \\\\= \dfrac{\dfrac{3y+3x}{xy}}{\dfrac{4y^2-9x^2}{x^2y^2}} \\\\= \dfrac{3y+3x}{xy}\div\dfrac{4y^2-9x^2}{x^2y^2} \\\\= \dfrac{3y+3x}{xy}\cdot\dfrac{x^2y^2}{4y^2-9x^2} \\\\= \dfrac{3(y+x)}{xy}\cdot\dfrac{xy\cdot xy}{(2y+3x)(2y-3x)} \\\\= \dfrac{3(y+x)}{\cancel{xy}}\cdot\dfrac{xy\cdot \cancel{xy}}{(2y+3x)(2y-3x)} \\\\= \dfrac{3xy(y+x)}{(2y+3x)(2y-3x)} .\end{array}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.