Intermediate Algebra (6th Edition)

Published by Pearson
ISBN 10: 0321785045
ISBN 13: 978-0-32178-504-6

Chapter 6 - Section 6.3 - Simplifying Complex Fractions - Exercise Set - Page 361: 32

Answer

$\dfrac{1}{x-2}$

Work Step by Step

The given expression, $ \dfrac{\dfrac{x+3}{x^2-9}}{1+\dfrac{1}{x-3}} ,$ simplifies to \begin{array}{l}\require{cancel} \dfrac{\dfrac{x+3}{x^2-9}}{\dfrac{x-3+1}{x-3}} \\\\= \dfrac{\dfrac{x+3}{x^2-9}}{\dfrac{x-2}{x-3}} \\\\= \dfrac{x+3}{x^2-9}\div\dfrac{x-2}{x-3} \\\\= \dfrac{x+3}{x^2-9}\cdot\dfrac{x-3}{x-2} \\\\= \dfrac{x+3}{(x+3)(x-3)}\cdot\dfrac{x-3}{x-2} \\\\= \dfrac{\cancel{x+3}}{(\cancel{x+3})(\cancel{x-3})}\cdot\dfrac{\cancel{x-3}}{x-2} \\\\= \dfrac{1}{x-2} .\end{array}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.