Answer
$\dfrac{x(6y+x)}{2y}$
Work Step by Step
The given expression, $
\dfrac{3x^{-1}+(2y)^{-1}}{x^{-2}}
,$ simplifies to
\begin{array}{l}\require{cancel}
\dfrac{\dfrac{3}{x^1}+\dfrac{1}{2y}}{\dfrac{1}{x^2}}
\\\\=
\dfrac{\dfrac{6y+x}{2xy}}{\dfrac{1}{x^2}}
\\\\=
\dfrac{6y+x}{2xy}\div\dfrac{1}{x^2}
\\\\=
\dfrac{6y+x}{2xy}\cdot x^2
\\\\=
\dfrac{6y+x}{2\cancel{x}y}\cdot \cancel{x}\cdot x
\\\\=
\dfrac{x(6y+x)}{2y}
.\end{array}