Intermediate Algebra (6th Edition)

Published by Pearson
ISBN 10: 0321785045
ISBN 13: 978-0-32178-504-6

Chapter 6 - Section 6.3 - Simplifying Complex Fractions - Exercise Set - Page 361: 19

Answer

$\dfrac{x-2}{2x-1}$

Work Step by Step

The given expression, $ \dfrac{\dfrac{x+2}{x}-\dfrac{2}{x-1}}{\dfrac{x+1}{x}+\dfrac{x+1}{x-1}} ,$ simplifies to \begin{array}{l}\require{cancel} \dfrac{\dfrac{(x-1)(x+2)-x(2)}{x(x-1)}}{\dfrac{(x-1)(x+1)+x(x+1)}{x(x-1)}} \\\\= \dfrac{\dfrac{(x-1)(x+2)-x(2)}{\cancel{x(x-1)}}}{\dfrac{(x-1)(x+1)+x(x+1)}{\cancel{x(x-1)}}} \\\\= \dfrac{(x-1)(x+2)-x(2)}{(x-1)(x+1)+x(x+1)} \\\\= \dfrac{x^2+x-2-2x}{x^2-1+x^2+x} \\\\= \dfrac{x^2-x-2}{2x^2+x-1} \\\\= \dfrac{(x-2)(x+1)}{(2x-1)(x+1)} \\\\= \dfrac{(x-2)(\cancel{x+1})}{(2x-1)(\cancel{x+1})} \\\\= \dfrac{x-2}{2x-1} .\end{array}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.