Intermediate Algebra (6th Edition)

Published by Pearson
ISBN 10: 0321785045
ISBN 13: 978-0-32178-504-6

Chapter 6 - Section 6.3 - Simplifying Complex Fractions - Exercise Set - Page 360: 16

Answer

$\dfrac{1}{y^2-3y+9}$

Work Step by Step

The given expression, $ \dfrac{\dfrac{1}{y}+\dfrac{3}{y^2}}{y+\dfrac{27}{y^2}} ,$ simplifies to \begin{array}{l}\require{cancel} \dfrac{\dfrac{y(1)+1(3)}{y^2}}{\dfrac{y^2(y)+1(27)}{y^2}} \\\\= \dfrac{\dfrac{y+3}{y^2}}{\dfrac{y^3+27}{y^2}} \\\\= \dfrac{y+3}{y^2}\div{\dfrac{y^3+27}{y^2}} \\\\= \dfrac{y+3}{y^2}\cdot{\dfrac{y^2}{y^3+27}} \\\\= \dfrac{y+3}{y^2}\cdot{\dfrac{y^2}{(y+3)(y^2-3y+9)}} \\\\= \dfrac{\cancel{y+3}}{\cancel{y^2}}\cdot{\dfrac{\cancel{y^2}}{(\cancel{y+3})(y^2-3y+9)}} \\\\= \dfrac{1}{y^2-3y+9} .\end{array}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.