Intermediate Algebra (6th Edition)

Published by Pearson
ISBN 10: 0321785045
ISBN 13: 978-0-32178-504-6

Chapter 6 - Section 6.3 - Simplifying Complex Fractions - Exercise Set - Page 361: 33

Answer

$2$

Work Step by Step

The given expression, $ \dfrac{\dfrac{2}{x+5}+\dfrac{4}{x+3}}{\dfrac{3x+13}{x^2+8x+15}} ,$ simplifies to \begin{array}{l}\require{cancel} \dfrac{\dfrac{2(x+3)+4(x+5)}{(x+5)(x+3)}}{\dfrac{3x+13}{(x+3)(x+5)}} \\\\= \dfrac{\dfrac{2(x+3)+4(x+5)}{\cancel{(x+5)(x+3)}}}{\dfrac{3x+13}{\cancel{(x+5)(x+3)}}} \\\\= \dfrac{2(x+3)+4(x+5)}{3x+13} \\\\= \dfrac{2x+6+4x+20}{3x+13} \\\\= \dfrac{6x+26}{3x+13} \\\\= \dfrac{2(3x+13)}{3x+13} \\\\= \dfrac{2(\cancel{3x+13})}{\cancel{3x+13}} \\\\= 2 .\end{array}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.