Answer
$\dfrac{7x}{y(x+y)}$
Work Step by Step
The given expression, $
\dfrac{\dfrac{7y}{x^2+xy}}{\dfrac{y^2}{x^2}}
,$ simplifies to
\begin{array}{l}\require{cancel}
\dfrac{7y}{x^2+xy}\div\dfrac{y^2}{x^2}
\\\\=
\dfrac{7y}{x^2+xy}\cdot\dfrac{x^2}{y^2}
\\\\=
\dfrac{7y}{x(x+y)}\cdot\dfrac{x^2}{y^2}
\\\\=
\dfrac{7\cancel{y}}{\cancel{x}(x+y)}\cdot\dfrac{\cancel{x}\cdot x}{\cancel{y}\cdot y}
\\\\=
\dfrac{7x}{y(x+y)}
.\end{array}