Intermediate Algebra (6th Edition)

Published by Pearson
ISBN 10: 0321785045
ISBN 13: 978-0-32178-504-6

Chapter 6 - Section 6.3 - Simplifying Complex Fractions - Exercise Set - Page 361: 46

Answer

$\dfrac{2(a+2)}{5a}$

Work Step by Step

The given expression, $ \dfrac{a^{-1}+2a^{-2}}{2a^{-1}+(2a)^{-1}} ,$ simplifies to \begin{array}{l}\require{cancel} \dfrac{\dfrac{1}{a}+\dfrac{2}{a^2}}{\dfrac{2}{a}+\dfrac{1}{2a}} \\\\= \dfrac{\dfrac{a+2}{a^2}}{\dfrac{4+1}{2a}} \\\\= \dfrac{\dfrac{a+2}{a^2}}{\dfrac{5}{2a}} \\\\= \dfrac{a+2}{a^2}\div\dfrac{5}{2a} \\\\= \dfrac{a+2}{a^2}\cdot\dfrac{2a}{5} \\\\= \dfrac{a+2}{\cancel{a}\cdot a}\cdot\dfrac{2\cancel{a}}{5} \\\\= \dfrac{2(a+2)}{5a} .\end{array}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.