Intermediate Algebra (6th Edition)

Published by Pearson
ISBN 10: 0321785045
ISBN 13: 978-0-32178-504-6

Chapter 6 - Section 6.3 - Simplifying Complex Fractions - Exercise Set - Page 361: 47

Answer

$\dfrac{xy}{5y+2x}$

Work Step by Step

The given expression, $ \dfrac{5x^{-1}-2y^{-1}}{25x^{-2}-4y^{-2}} ,$ simplifies to \begin{array}{l}\require{cancel} \dfrac{\dfrac{5}{x}-\dfrac{2}{y}}{\dfrac{25}{x^2}-\dfrac{4}{y^2}} \\\\= \dfrac{\dfrac{5y-2x}{xy}}{\dfrac{25y^2-4x^2}{x^2y^2}} \\\\= \dfrac{5y-2x}{xy}\div\dfrac{25y^2-4x^2}{x^2y^2} \\\\= \dfrac{5y-2x}{xy}\cdot\dfrac{x^2y^2}{25y^2-4x^2} \\\\= \dfrac{5y-2x}{xy}\cdot\dfrac{x^2y^2}{(5y-2x)(5y+2x)} \\\\= \dfrac{\cancel{5y-2x}}{\cancel{xy}}\cdot\dfrac{\cancel{xy}\cdot xy}{(\cancel{5y-2x})(5y+2x)} \\\\= \dfrac{xy}{5y+2x} .\end{array}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.