Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 8: Techniques of Integration - Section 8.3 - Trigonometric Integrals - Exercises 8.3 - Page 462: 7

Answer

\begin{aligned} \int \sin ^{5} x d x =-\cos x+\frac{2}{3} \cos ^{3} x-\frac{1}{5} \cos ^{5} x+C \end{aligned}

Work Step by Step

Given $$ \int \sin ^{5} x d x $$ So, we have \begin{aligned} I&= \int \sin ^{5} x d x\\ &=\int\left(\sin ^{2} x\right)^{2} \sin x d x\\ &=\int\left(1-\cos ^{2} x\right)^{2} \sin x d x\\ &=\int\left(1-2 \cos ^{2} x+\cos ^{4} x\right) \sin x d x\\ &=\int \sin x d x-\int 2 \cos ^{2} x \sin x d x+\int \cos ^{4} x \sin x d x\\ &=-\cos x+\frac{2}{3} \cos ^{3} x-\frac{1}{5} \cos ^{5} x+C \end{aligned}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.