Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 8: Techniques of Integration - Section 8.3 - Trigonometric Integrals - Exercises 8.3 - Page 462: 42

Answer

$$\frac{1}{3}{\left( {\tan 3x} \right)^3} + \tan 3x + C $$

Work Step by Step

$$\eqalign{ & \int {3{{\sec }^4}3x} dx \cr & {\text{We write }}{\sec ^4}3x{\text{ as }}{\sec ^2}3x{\sec ^2}3x{\text{ }} \cr & = \int {3{{\sec }^2}3x} {\sec ^2}3xdx \cr & {\text{use the fundamental identiy ta}}{{\text{n}}^2}\theta = {\sec ^2}\theta - 1 \cr & = \int {3\left( {{{\tan }^2}3x + 1} \right)} {\sec ^2}3xdx \cr & {\text{Integrate by substitution method}} \cr & {\text{Let }}u = {\tan ^2}3x,\,\,\,\,du = 3{\sec ^2}3xdx,\,\,\,\,dx = \frac{{du}}{{3{{\sec }^2}3x}} \cr & {\text{Then}}{\text{,}} \cr & = \int {3\left( {{u^2} + 1} \right)} {\sec ^2}3x\left( {\frac{{du}}{{3{{\sec }^2}3x}}} \right) \cr & {\text{Cancel common factors}} \cr & = \int {\left( {{u^2} + 1} \right)} du \cr & {\text{integrating}} \cr & = \frac{1}{3}{u^3} + u + C \cr & {\text{write in terms of }}x,\,\,\,u = \tan 3x \cr & = \frac{1}{3}{\left( {\tan 3x} \right)^3} + \tan 3x + C \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.