Answer
$$\int_{0}^{\pi} \sqrt{1-\cos ^{2} \theta} \mathrm{d} \theta=2 $$
Work Step by Step
Given $$\int_{0}^{\pi} \sqrt{1-\cos ^{2} \theta} \mathrm{d} \theta $$
So, we have
\begin{aligned}
I&=\int_{0}^{\pi} \sqrt{1-\cos ^{2} \theta} \ d\theta\\
&=\int_{0}^{\pi}|\sin \theta| \ d \theta\\
&=\int_{0}^{\pi} \sin \theta \ d \theta\\
&=[-\cos \theta]_{0}^{\pi}\\
&=-\cos \pi+\cos0\\
&=1+1\\
&=2\\
\end{aligned}