Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 8: Techniques of Integration - Section 8.3 - Trigonometric Integrals - Exercises 8.3 - Page 462: 15

Answer

\begin{aligned} \int_{0}^{\pi / 2} \sin ^{7} y d y =\frac{16}{35} \end{aligned}

Work Step by Step

Given $$ \int_{0}^{\pi / 2} \sin ^{7} y d y $$ So, we have \begin{aligned} I&= \int_{0}^{\pi / 2} \sin ^{7} y d y\\ &=\int_{0}^{\pi / 2} \sin ^{6} y \sin y d y\\ &=\int_{0}^{\pi / 2}\left(1-\cos ^{2} y\right)^{3} \sin y d y\\ &=\int_{0}^{\pi / 2}\left(1-3\cos ^{2}y +3\cos ^{4}y -\cos ^{6} y\right) \sin y d y\\ &=\int_{0}^{\pi / 2} \sin y d y-3 \int_{0}^{\pi / 2} \cos ^{2} y \sin y d y\\&+3 \int_{0}^{\pi / 2} \cos ^{4} y \sin y d y-\int_{0}^{\pi / 2} \cos ^{6} y \sin y d y\\ &=\left[-\cos y+3 \frac{\cos ^{2} y}{3}-3 \frac{\cos ^{5} y}{5}+\frac{\cos ^{2} y}{7}\right]_{0}^{\pi / 2}\\ &=\left[-\cos \pi / 2+3 \frac{\cos ^{2} \pi / 2}{3}-3 \frac{\cos ^{5} \pi / 2}{5}+\frac{\cos ^{2} \pi / 2}{7}\right] -\left[-\cos 0+3 \frac{\cos ^{2} 0}{3}-3 \frac{\cos ^{5} 0}{5}+\frac{\cos ^{2} 0}{7}\right] \\ &=(0)-\left(-1+1-\frac{3}{5}+\frac{1}{7}\right)\\ &=\frac{16}{35} \end{aligned}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.