Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 8: Techniques of Integration - Section 8.3 - Trigonometric Integrals - Exercises 8.3 - Page 462: 10

Answer

\begin{aligned} \int_{0}^{\pi / 6} 3 \cos ^{5} 3 x d x =\frac{8}{15} \end{aligned}

Work Step by Step

Given $$ \int_{0}^{\pi / 6} 3 \cos ^{5} 3 x d x $$ So, we have \begin{aligned} I&= \int_{0}^{\pi / 6} 3 \cos ^{5} 3 x d x\\ &=\int_{0}^{\pi / 6}\left(\cos ^{2} 3 x\right)^{2} \cos 3 x \cdot 3 d x\\ &=\int_{0}^{\pi / 6}\left(1-\sin ^{2} 3 x\right)^{2} \cos 3 x \cdot 3 d x\\ &=\int_{0}^{\pi / 6}\left(1-2 \sin ^{2} 3 x+\sin ^{4} 3 x\right) \cos 3 x \cdot 3 d x\\ &=\int_{0}^{\pi / 6} \cos 3 x \cdot 3 d x-2 \int_{0}^{\pi / 6} \sin ^{2} 3 x \cos 3 x \cdot 3 d x+\int_{0}^{\pi / 6} \sin ^{4} 3 x \cdot \cos 3 x \cdot 3 d x\\ &=\left[\sin 3 x-2 \frac{\sin ^{3} 3x}{3}+\frac{\sin ^{3}3 x}{5}\right]_{0}^{\pi / 6}\\ &=\left[\sin 3\pi / 2-2 \frac{\sin ^{3} \pi / 2}{3}+\frac{\sin ^{3} \pi / 2}{5}\right] -\left[\sin 0-2 \frac{\sin ^{3} 0}{3}+\frac{\sin ^{3} 0}{5}\right] \\ &=\left(1-\frac{2}{3}+\frac{1}{5}\right)-(0)\\ &=\frac{8}{15} \end{aligned}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.