Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 8: Techniques of Integration - Section 8.3 - Trigonometric Integrals - Exercises 8.3 - Page 462: 22

Answer

$$ \int_{0}^{\pi / 2} \sin ^{2} 2 \theta \cos ^{3} 2 \theta \ d\theta=0 $$

Work Step by Step

Given $$ \int_{0}^{\pi / 2} \sin ^{2} 2 \theta \cos ^{3} 2 \theta \ d\theta $$ So, we have \begin{aligned} I&= \int_{0}^{\pi / 2} \sin ^{2} 2 \theta \cos ^{3} 2 \theta d \theta\\ &= \int_{0}^{\pi / 2} \sin ^{2} 2 \theta \cos ^{2} 2 \theta \cos 2 \theta d \theta\\ &=\int_{0}^{\pi / 2} \sin ^{2} 2 \theta\left(1-\sin ^{2} 2 \theta\right) \cos 2 \theta \ d \theta\\ &=\int_{0}^{\pi / 2} \sin ^{2} 2 \theta \cos 2 \theta \ d \theta-\int_{0}^{\pi / 2} \sin ^{4} 2 \theta \cos 2 \theta \ d \theta\\ &=\frac{1}{2}\int_{0}^{\pi / 2} \sin ^{2} 2 \theta\ \ ( 2\cos 2) \theta \ d \theta-\frac{1}{2}\int_{0}^{\pi / 2} \sin ^{4} 2 \theta (2\cos 2 \theta) \ d \theta\\ &=\left[\frac{1}{2} \cdot \frac{\sin ^{3} 2 \theta}{3}-\frac{1}{2} \cdot \frac{\sin ^{5} 2 \theta}{5}\right]_{0}^{\pi / 2}\\ &=\left[\frac{1}{2} \cdot \frac{\sin ^{3} \pi}{3}-\frac{1}{2} \cdot \frac{\sin ^{5} \pi}{5}\right]-\left[\frac{1}{2} \cdot \frac{\sin ^{3} 0}{3}-\frac{1}{2} \cdot \frac{\sin ^{5} 0}{5}\right]\\ &=0 \end{aligned}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.