Answer
$$-\frac{8}{3} \cot ^{3} t+8 \cot t+8 t+C $$
Work Step by Step
We integrate as follows:
\begin{align*}
\int 8 \cot ^{4} t d t&=8 \int\left(\csc ^{2} t-1\right) \cot ^{2} t d t\\
&=8 \int \csc ^{2} t \cot ^{2} t d t-8 \int \cot ^{2} t d t\\
&=-\frac{8}{3} \cot ^{3} t-8 \int\left(\csc ^{2} t-1\right) d t\\
&=-\frac{8}{3} \cot ^{3} t+8 \cot t+8 t+C
\end{align*}