Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 8: Techniques of Integration - Section 8.3 - Trigonometric Integrals - Exercises 8.3 - Page 462: 49

Answer

$$\frac{4}{3}-\ln \sqrt{3}$$

Work Step by Step

We integrate as follows: \begin{align*} \int_{\pi / 6}^{\pi / 3} \cot ^{3} x d x&=\int_{\pi / 6}^{\pi / 3}\left(\csc ^{2} x-1\right) \cot x d x\\ &=\int_{\pi / 6}^{\pi / 3} \csc ^{2} x \cot x d x-\int_{\pi / 6}^{\pi / 3} \cot x d x\\ &=\left(-\frac{\cot ^{2} x}{2}+\ln |\csc x|\right)\bigg|_{\pi / 6}^{\pi / 3}\\ &=-\frac{1}{2}\left(\frac{1}{3}-3\right)+\left(\ln \frac{2}{\sqrt{3}}-\ln 2\right)\\ &=\frac{4}{3}-\ln \sqrt{3} \end{align*}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.