Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 8: Techniques of Integration - Section 8.3 - Trigonometric Integrals - Exercises 8.3 - Page 462: 27

Answer

$$\sqrt{\frac{3}{2}}-\frac{2}{3}$$

Work Step by Step

We integrate as follows: \begin{align*} \int_{\pi / 3}^{\pi / 2} \frac{\sin ^{2} x}{\sqrt{1-\cos x}} d x&=\int_{\pi / 3}^{\pi / 2} \frac{\sin ^{2} x}{\sqrt{1-\cos x}} \frac{\sqrt{1+\cos x}}{\sqrt{1+\cos x}} d x\\ &=\int_{\pi / 3}^{\pi / 2} \frac{\sin ^{2} x \sqrt{1+\cos x}}{\sqrt{1-\cos ^{2} x}} d x\\ &=\int_{\pi / 3}^{\pi / 2} \frac{\sin ^{2} x \sqrt{1+\cos x}}{\sqrt{\sin ^{2} x}} d x\\ &=\int_{\pi / 3}^{\pi / 2} \sin x \sqrt{1+\cos x} d x\\ &=\left[-\frac{2}{3}(1+\cos x)^{3 / 2}\right]_{\pi / 3}^{\pi / 2}\\ &=-\frac{2}{3}\left(1+\cos \left(\frac{\pi}{2}\right)\right)^{3 / 2}+\frac{2}{3}\left(1+\cos \left(\frac{\pi}{3}\right)\right)^{3 / 2}\\ &=-\frac{2}{3}+\frac{2}{3}\left(\frac{3}{2}\right)^{3 / 2}\\ &=\sqrt{\frac{3}{2}}-\frac{2}{3} \end{align*}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.