Answer
$$\sqrt{2}$$
Work Step by Step
We integrate as follows:
\begin{align*}
\int_{0}^{\pi / 2} \theta \sqrt{1-\cos 2 \theta} d \theta\\&=\int_{0}^{\pi / 2} \theta \sqrt{2}|\sin \theta| d \theta\\
&=\sqrt{2} \int_{0}^{\pi / 2} \theta \sin \theta d \theta\\
&=\sqrt{2}[-\theta \cos \theta+\sin \theta]\bigg|_{0}^{\pi / 2}\\
&=\sqrt{2}
\end{align*}